

ATTITUDE ERROR KINEMATICS: APPLICATION IN OPTIMAL CONTROL OF DYNAMICAL SYSTEMS

AIAA Houston Annual Technical Symposium 17 May 2013 NASA/JSC, Gilruth Center, Houston, Tx.

Ahmad Bani-Younes James Turner

Outline

Introduction

Optimal Reference Motion

Open-loop solution

Motion Error Dynamics

> Angular Velocity Error: $\delta \omega = \omega - \omega_r$

> Angular Velocity Error: $\delta \omega = \omega - \delta C \omega_r$

Generic Optimal Tracking Control Formulation

Quadratic Penalty Function

Universal Penalty Function

MRP Attitude Penalty Function

Future Work and Conclusion

Orginal projected onto the actual instantaneous body axes

🕖 projected onto the

reference trajectory

body axes

- Generic Optimal Control Solution -- introduce a universal quadratic penalties of tracking errors <u>that is consistent in each</u> <u>of the coordinate choices</u>—i.e. a quadratic penalty on the MRPs error is clearly not "the same" physically as a quadratic penalty on the classical Rodrigues parameters
 - We utilize this universal attitude error measure expressed through approximate transformations as a positive function of each of the coordinate choices

>> Main Contribution

Full nonlinear Motion Error in Compact Form

Universe Penalty Function for O.C.P

Introduction

Example: (Spacecraft Maneuver)

$$\min J = \frac{1}{2} \int_{t_0}^{t_f} \left\{ \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{u}^T \boldsymbol{R} \boldsymbol{u} \right\} dt = \frac{1}{2} \int_{t_0}^{t_f} \left\{ \boldsymbol{\omega}^T \boldsymbol{Q}_{\boldsymbol{\omega}} \boldsymbol{\omega} + \boldsymbol{\zeta}^T \boldsymbol{Q}_{\boldsymbol{\zeta}} \boldsymbol{\zeta} + \boldsymbol{u}^T \boldsymbol{R} \boldsymbol{u} \right\} dt$$

subject to:
$$\dot{\mathbf{x}} = \begin{cases} I\dot{\boldsymbol{\omega}} = -[\boldsymbol{\omega} \times]I\boldsymbol{\omega} + \boldsymbol{u} \\ \dot{\boldsymbol{\zeta}} = [f(\boldsymbol{\zeta})]\boldsymbol{\omega} \end{cases}$$
, where $Q = diag([Q_{\boldsymbol{\omega}}, Q_{\boldsymbol{\zeta}}])$

where $\boldsymbol{\omega}$ is angular velocity and $\boldsymbol{\zeta}$ is an arbitrary attitude parameter If Quaternion and the state weight was $Q = diag([Q_{\omega}, \alpha I_{4\times 4}])$ where $\boldsymbol{\alpha}$ is a positive non – zero scalar

$$J = \frac{1}{2} \int_{t_0}^{t_f} \left\{ \boldsymbol{\alpha} + \boldsymbol{\omega}^T \boldsymbol{Q}_{\boldsymbol{\omega}} \boldsymbol{\omega} + \boldsymbol{u}^T \boldsymbol{R} \boldsymbol{u} \right\} dt$$

The cost function becomes independent of attitude variable due to quaternion norm constraint!!

Optimal Reference Motion

Minimize
$$J = \frac{1}{2} \Phi(t_f, \boldsymbol{\omega}(t_f), \boldsymbol{\zeta}(t_f)) + \frac{1}{2} \int_{t_0}^{t_f} L(\boldsymbol{\omega}, \boldsymbol{\zeta}, \boldsymbol{u}, t) dt$$

Subject to
$$\dot{\mathbf{x}} = [\dot{\boldsymbol{\omega}}^T \quad \dot{\boldsymbol{\zeta}}^T]^T = \begin{cases} I\dot{\boldsymbol{\omega}} = -[\boldsymbol{\omega} \times]I\boldsymbol{\omega} + \boldsymbol{u} \\ \dot{\boldsymbol{\zeta}} = [f(\boldsymbol{\zeta})]\boldsymbol{\omega} \end{cases}$$

where the penalty functions are

$$\Phi(t_f, \boldsymbol{\zeta}(t_f), \boldsymbol{\omega}(t_f)) = Q_1 g(\boldsymbol{\zeta}_{t_f}) + \boldsymbol{\omega}_{t_f}^T Q_2 \boldsymbol{\omega}_{t_f}$$

and
$$L(\boldsymbol{\zeta}, \boldsymbol{\omega}, \boldsymbol{u}, t) = Q_3 g(\boldsymbol{\zeta}) + \boldsymbol{\omega}^T Q_4 \boldsymbol{\omega} + \boldsymbol{u}^T R \boldsymbol{u}$$

<u>Hamiltonian</u>

 $H = \frac{1}{2} \Big\{ Q_3 g(\boldsymbol{\zeta}) + \boldsymbol{\omega}^T Q_4 \boldsymbol{\omega} + \boldsymbol{u}^T R \boldsymbol{u} \Big\} + \boldsymbol{\lambda}_{\boldsymbol{\omega}}^T I^{-1} \big(-[\boldsymbol{\omega} \times] I \boldsymbol{\omega} + \boldsymbol{u} \big) + \boldsymbol{\lambda}_{\boldsymbol{\zeta}}^T \Big[f(\boldsymbol{\zeta}) \Big] \boldsymbol{\omega}$

Optimal Reference Motion

Invoking the Pontryagin necessary condition for optimality: $\dot{\lambda}_{\omega} = -Q_4 \omega - \left[f(\zeta) \right]^T \lambda_{\zeta} - \left(I[\omega \times] - \left[(I\omega) \times] \right) I^{-1} \lambda_{\omega}$

$-\frac{1}{2}\partial g$	Table 1: Attitude Kinematics.		
$\zeta = -\frac{1}{2} \mathcal{Q}_3 \frac{1}{2\mathcal{P}}$	Attitude parameter	Attitude Kinematics $\zeta = [f(\zeta)]\omega$	
Δ Ος \	DCM	$\dot{C} = -[\boldsymbol{\omega} \times]C$	
$-\frac{\partial}{\partial \zeta} \left[\left[f(\zeta) \right] \boldsymbol{\omega} \right]^T \boldsymbol{\lambda}_{\zeta}$	Quaternion	$\dot{\boldsymbol{q}} = \frac{1}{2} \begin{bmatrix} -[\boldsymbol{\omega} \times] & \boldsymbol{\omega} \\ -\boldsymbol{\omega}^{T} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_{\nu} \\ \boldsymbol{q}_{4} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \boldsymbol{q}_{4} & -\boldsymbol{q}_{3} & \boldsymbol{q}_{2} \\ \boldsymbol{q}_{3} & \boldsymbol{q}_{4} & -\boldsymbol{q}_{1} \\ -\boldsymbol{q}_{2} & \boldsymbol{q}_{1} & \boldsymbol{q}_{4} \\ -\boldsymbol{q}_{1} & -\boldsymbol{q}_{2} & -\boldsymbol{q}_{3} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{1} \\ \boldsymbol{\omega}_{2} \\ \boldsymbol{\omega}_{3} \end{bmatrix}$	
	CRPs	$\dot{\boldsymbol{\rho}} = \frac{1}{2} \Big[[I_{3\times 3}] + [\boldsymbol{\rho} \times] + \boldsymbol{\rho} \boldsymbol{\rho}^T \Big] \boldsymbol{\omega}$	
	MRPs	$\dot{\boldsymbol{\sigma}} = \frac{1}{4} \Big[(1 - \boldsymbol{\sigma}^T \boldsymbol{\sigma}) [I_{3\times 3}] + 2[\boldsymbol{\sigma} \times] + 2\boldsymbol{\sigma} \boldsymbol{\sigma}^T \Big] \boldsymbol{\omega}$	
$\boldsymbol{u} = -\boldsymbol{R}^{-1}\boldsymbol{I}^{-1}\boldsymbol{\lambda}_{\boldsymbol{\omega}}$	Euler Angles*	$\begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{bmatrix}_{\text{with}} = \mathbf{S}^{-1}(\theta_1, \theta_2, \theta_3)\boldsymbol{\omega}$	
$= -(IR)^{-1}\lambda_{\omega}$	Principal angle/axis	$\dot{\phi} = \boldsymbol{\omega}^T \hat{\boldsymbol{e}}, \dot{\boldsymbol{e}} = \frac{1}{2} [[\hat{\boldsymbol{e}} \times] - \cot(\phi/2)[\hat{\boldsymbol{e}} \times]] \hat{\boldsymbol{\omega}}$	
What are $g() \& f()??$	Cayley-Klein	$\operatorname{col}(\dot{K}) = \frac{1}{2} \Psi_0 \begin{bmatrix} -[\boldsymbol{\omega} \times] & \boldsymbol{\omega} \\ -\boldsymbol{\omega}^T & 0 \end{bmatrix} \Psi_0^{-1} \operatorname{col}(K), \text{where } \Psi_{\cdot} = \begin{bmatrix} 0 & 0 & i & 1 \\ i & -1 & 0 & 0 \\ i & 1 & 0 & 0 \\ 0 & 0 & -i & 1 \end{bmatrix}$	
	*See Ref.[2] for $\mathbf{S}^{-1}(\delta heta_1, \delta heta_2, \delta heta_3)$ definition.		

The scalar function g() is a general nonnegative attitude penalty function. The function is chosen that will produce identical performance index values, regardless of the attitude variables selected⁽¹⁾

Land Air and Space Robotics

Optimal Reference Motion

AEROSPACE ENGINEERING

$$g\left(\left[C\left(\hat{e},\phi\right)\right]\right) = \frac{1}{4}\left\{3 - \operatorname{trace}\left(\left[C\right]\right)\right\} = \sin^{2}\left(\phi/2\right)$$

$$\frac{\operatorname{Quaternion}}{g\left(\left[C\left(\varphi\right)\right]\right) = q_{1}^{2} + q_{2}^{2} + q_{1}^{2} \text{ and } \frac{\partial g}{\partial q} = 2\left[q_{1} \quad q_{2} \quad q_{1} \quad 0\right]^{T}}{\frac{\operatorname{CRP}}}$$

$$g\left(\left[C\left(\rho\right)\right]\right) = \frac{\rho^{T}\rho}{1 + \rho^{T}\rho} \text{ and } \frac{\partial g}{\partial p} = \frac{2\rho}{(1 + \sigma^{T}\sigma)^{2}}$$

$$\frac{\operatorname{MRP}}{g\left(\left[C\left(\sigma\right)\right]\right) = 4\frac{\sigma^{T}\sigma}{(1 + \sigma^{T}\sigma)^{2}} \text{ and } \frac{\partial g}{\partial \sigma} = 8\sigma\frac{1 - \sigma^{T}\sigma}{(1 + \sigma^{T}\sigma)^{3}}$$

$$Euler Angles$$

$$g\left(\left[C\left(\theta\right)\right]\right) = \frac{1}{4}\left[3 - (1 + \cos(\theta_{2}))\cos(\theta_{1} + \theta_{2}) - \cos(\theta_{2})\right] \text{ and } \frac{\partial g}{\partial \theta} = \frac{1}{4}\left[\frac{(1 + \cos(\theta_{2}))\sin(\theta_{1} + \theta_{2})}{\sin(\theta_{1})\cos(\theta_{1} + \theta_{1})} + \sin(\theta_{2})}\right]$$

(1) H. Schaub, J. L. Junkins, and R. D. Robinett, "New Penalty Functions and Optimal Control Formulation for Spacecraft Attitude Control Problems," Journal of Guidance, Control, and Dynamics, 20(3):428-434, May-June 1997.

Land Air and Space Robotics Optimal Reference Motion

Open-Loop Optimal Control Problem

 $\omega(0) = [0.1, 0.2, 0.3], \ \omega(25) = [0, 0, 0] \text{ rad/sec}$ $\zeta(0) = [-0.20295, 0.33388, 0.13750]$ $\zeta(25) = [0.41421, 0, 0]$

$$Q_1 = 0, Q_3 = 1, Q_2 = 0_{3\times 3},$$

 $Q_4 = R = I_{3\times 3}$ (Identity)

I = diag([86.215, 85.070, 113.565]) Kg.m²

Angular Velocity Error Dynamics (Tracking Control Formulation)

The desired motion is defined in terms of the open-loop reference angular velocity

$$I_{r}\dot{\omega}_{r} = -[\omega_{r} \times]I_{r}\omega_{r} + \tau$$

$$\delta\omega = \omega - \omega_{r}$$
Angular Velocity Error Vector
$$\delta\dot{\omega} = -I^{-1}\{[\omega_{r} \times]I - [(I\omega_{r}) \times]\}\delta\omega - I^{-1}[\delta\omega \times]I\delta\omega + I^{-1}u - \dot{\omega}_{r} - I^{-1}[\omega_{r} \times]I\omega_{r}$$

Full Nonlinear Angular Velocity Error Dynamics Rate

For An Exact Kinematic Model This Equation Predicts Arbitrarily Large Motion Angular Velocity Error Vector Estimates (no linearization)

Motion Error Kinematics

Quaternion Error
$$\delta q = q \otimes q_r^{-1} \implies \delta \dot{q} = \dot{q} \otimes q_r^{-1} + q \otimes \dot{q}_r^{-1}$$

$$\dot{\boldsymbol{q}} = \frac{1}{2} \begin{cases} \boldsymbol{\omega} \\ 0 \end{cases} \otimes \boldsymbol{q} = \begin{bmatrix} -[\boldsymbol{\omega} \times] & \delta \boldsymbol{\omega} \\ -\delta \boldsymbol{\omega} & 0 \end{bmatrix} \boldsymbol{q} = \frac{1}{2} \Omega(\boldsymbol{\omega}) \boldsymbol{q}$$

1

$$\dot{\boldsymbol{q}}_{r}^{-1} = -\frac{1}{2}\boldsymbol{q}_{r}^{-1} \otimes \left\{ \begin{matrix} \boldsymbol{\omega}_{r} \\ \boldsymbol{0} \end{matrix} \right\} = -\frac{1}{2}\Gamma(\boldsymbol{\omega}_{r})\boldsymbol{q}_{r}^{-1}$$

$$\delta \dot{\boldsymbol{q}} = \frac{1}{2} [\Omega(\boldsymbol{\omega}) - \Gamma(\boldsymbol{\omega}_{r})] \delta \boldsymbol{q} \implies \delta \dot{\boldsymbol{q}} = \frac{1}{2} [\Omega(\delta \boldsymbol{\omega} + \boldsymbol{\omega}_{r}) - \Gamma(\boldsymbol{\omega}_{r})] \delta \boldsymbol{q} = \frac{1}{2} [\Omega(\delta \boldsymbol{\omega}) + \Gamma(\boldsymbol{\omega}_{r})] \delta \boldsymbol{q}$$

$$\delta \dot{\boldsymbol{q}} = \frac{1}{2} \begin{bmatrix} -\left([\delta \boldsymbol{\omega} \times] + 2[\boldsymbol{\omega}_{r} \times]\right) & \delta \boldsymbol{\omega} \\ \delta \boldsymbol{\omega}^{T} & 0 \end{bmatrix} \begin{bmatrix} \delta \boldsymbol{q}_{v} \\ \delta \boldsymbol{q}_{4} \end{bmatrix} \xrightarrow{\text{Rate Valid for Large Changes}}$$

General Procedure to Build Large Motion Error Models

Build on Nonlinear Plant & Quaternion Error Models

$\delta \boldsymbol{q} = \boldsymbol{q} \otimes \hat{\boldsymbol{q}}^{-1}$ $\delta \dot{\boldsymbol{q}} = \boldsymbol{f} \left(\delta \boldsymbol{q}, \delta \boldsymbol{\omega} \right)$ Exact Error Models

Build New Variable Mapping Eqns

 $\delta \boldsymbol{\xi} = \boldsymbol{g}(\delta \boldsymbol{q})$

 $\delta \dot{\boldsymbol{\xi}} = \boldsymbol{h}(\delta \boldsymbol{q}, \delta \dot{\boldsymbol{q}})$

 $\delta \dot{\boldsymbol{\xi}} = \boldsymbol{\phi} (\delta \boldsymbol{\xi}, \delta \boldsymbol{\omega})$

Exact Error Mapping

•

Exact Kinematics Error Models

KEY INSIGHT: Exploit Exact Quaternion Error Model in Transformation of New Variable Sets. Leads to Models without Truncation Error for Large & Rapid Motions

Nonlinear Model Development

 $\mathbf{AFM} \mid \mathbf{TEXAS}_{U \ N \ I \ V \ E \ R \ S \ I \ T \ Y}$ $\mathbf{AEROSPACE ENGINEERING}$

Motion Error Kinematics

$\delta \boldsymbol{\omega} = \boldsymbol{\omega} - \boldsymbol{\omega}_r$		
$\delta \dot{C} = [\delta \boldsymbol{\omega} \times] \delta C - [\boldsymbol{\omega}_r \times] \delta C + \delta C [\boldsymbol{\omega}_r \times]$		
$\delta \dot{\boldsymbol{q}} = \frac{1}{2} \begin{bmatrix} -\left(\begin{bmatrix} \delta \boldsymbol{\omega} \times \end{bmatrix} + 2\begin{bmatrix} \boldsymbol{\omega}_{r} \times \end{bmatrix} \right) & \delta \boldsymbol{\omega} \\ -\delta \boldsymbol{\omega}^{T} & 0 \end{bmatrix} \begin{bmatrix} \delta \boldsymbol{q}_{v} \\ \delta \boldsymbol{q}_{4} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \delta \boldsymbol{q}_{4} & -\delta \boldsymbol{q}_{3} & \delta \boldsymbol{q}_{2} \\ \delta \boldsymbol{q}_{3} & \delta \boldsymbol{q}_{4} & -\delta \boldsymbol{q}_{1} \\ -\delta \boldsymbol{q}_{2} & \delta \boldsymbol{q}_{1} & \delta \boldsymbol{q}_{4} \\ -\delta \boldsymbol{q}_{1} & -\delta \boldsymbol{q}_{2} & -\delta \boldsymbol{q}_{3} \end{bmatrix} \begin{bmatrix} \delta \boldsymbol{\omega}_{1} \\ \delta \boldsymbol{\omega}_{2} \\ \delta \boldsymbol{\omega}_{3} \end{bmatrix} - \begin{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{r} \times \end{bmatrix} \delta \boldsymbol{q}_{v} \\ 0 \end{bmatrix}$		
$\delta \dot{\boldsymbol{\rho}} = \frac{1}{2} \Big[[I_{3\times3}] + [\delta \boldsymbol{\rho} \times] + \delta \boldsymbol{\rho} \delta \boldsymbol{\rho}^T \Big] \delta \boldsymbol{\omega} - [\boldsymbol{\omega}_r \times] \delta \boldsymbol{\rho}$		
$\delta \dot{\boldsymbol{\sigma}} = \frac{1}{4} \Big[(1 - \delta \boldsymbol{\sigma}^T \delta \boldsymbol{\sigma}) [I_{3\times 3}] + 2 [\delta \boldsymbol{\sigma} \times] + 2 \delta \boldsymbol{\sigma} \delta \boldsymbol{\sigma}^T \Big] \delta \boldsymbol{\omega} - [\boldsymbol{\omega}_r \times] \delta \boldsymbol{\sigma}$		
$\begin{bmatrix} \delta \dot{\theta}_1 \\ \delta \dot{\theta}_2 \\ \delta \dot{\theta}_3 \end{bmatrix}_{ijk} = \frac{1}{4} (H_{ijk}^T H_{ijk}^T)^{-1} H_{ijk}^T \begin{bmatrix} -([\delta \boldsymbol{\omega} \times] + 2[\boldsymbol{\omega}_r \times]) & \delta \boldsymbol{\omega} \\ -\delta \boldsymbol{\omega}^T & 0 \end{bmatrix} \Theta_{ijk}$		
$\delta \dot{\phi} = \delta \boldsymbol{\omega}^{T} \delta \hat{\boldsymbol{e}} = \delta \hat{\boldsymbol{e}}^{T} \delta \boldsymbol{\omega}$ $\delta \dot{\boldsymbol{e}} = \frac{1}{2} \left[[\delta \hat{\boldsymbol{e}} \times] - \cot(\delta \phi / 2) [\delta \hat{\boldsymbol{e}} \times] [\delta \hat{\boldsymbol{e}} \times] \right] \delta \boldsymbol{\omega} - [\boldsymbol{\omega}_{r} \times] \delta \hat{\boldsymbol{e}}$		
$\operatorname{col}(\delta \dot{K}) = \frac{1}{2} \Psi_0 \begin{bmatrix} -\left([\delta \boldsymbol{\omega} \times] + 2[\boldsymbol{\omega}_r \times]\right) & \delta \boldsymbol{\omega} \\ -\delta \boldsymbol{\omega}^T & 0 \end{bmatrix} \Psi_0^{-1} \operatorname{col}(\delta K)$ where $\Psi_i = \begin{bmatrix} 0 & 0 & i & 1 \\ i & -1 & 0 & 0 \\ i & 1 & 0 & 0 \\ 0 & 0 & -i & 1 \end{bmatrix}$		

*See Ref.[1] for H_{ijk} and Θ_{ijk} definitions, and see Ref.[2] for $\mathbf{S}^{-1}(\delta\theta_1, \delta\theta_2, \delta\theta_3)$ definition.

[1] Bani Younes, A., Mortari, D., Turner, J.D., and Junkins, J.L. "Attitude Error Kinematics," AIAA Journal of Guidance, Control, and Dynamics, accepted. [2] P.C. Hughes. Spacecraft attitude dynamics. J. Wiley, 1986.

Motion Error Dynamics

Angular Velocity Error Vector

$$\delta\omega = \omega - \delta C \omega_r$$

 $\delta \dot{\boldsymbol{\omega}} = -I^{-1} \left\{ [(\delta C \boldsymbol{\omega}_r) \times] I - [(I \delta C \boldsymbol{\omega}_r) \times] \right\} \delta \boldsymbol{\omega} - I^{-1} [\delta \boldsymbol{\omega} \times] I \delta \boldsymbol{\omega} + I^{-1} \boldsymbol{u} + [\delta \boldsymbol{\omega} \times] \delta C \boldsymbol{\omega}_r - \dot{\boldsymbol{\omega}}_r - I^{-1} [(\delta C \boldsymbol{\omega}_r) \times] I \delta C \boldsymbol{\omega}_r$

Attitude Error Vector

$$\delta C = C\hat{C}^{T} \quad \text{note: } \dot{C} = -[\boldsymbol{\omega} \times]C \text{ and } \dot{\hat{C}} = -[\boldsymbol{\omega}_{r} \times]\hat{C}$$
$$\Rightarrow \delta \dot{C} = \dot{C}\hat{C}^{T} + C\dot{\hat{C}}^{T} = -[\boldsymbol{\omega} \times]\delta C + \delta C[\boldsymbol{\omega}_{r} \times] \quad \text{use } \delta \boldsymbol{\omega} = \boldsymbol{\omega} - \delta C\boldsymbol{\omega}_{r}$$
$$\Rightarrow \delta \dot{C} = -[\delta \boldsymbol{\omega} \times]\delta C - [(\delta C \boldsymbol{\omega}_{r}) \times]\delta C + \delta C[\boldsymbol{\omega}_{r} \times]$$

transformation of skew-symmetric tensor identity

$$\delta \dot{C} = -[\delta \boldsymbol{\omega} \times] \delta C$$

 $[(\delta C \boldsymbol{\omega}_r) \times] = \delta C[\boldsymbol{\omega}_r \times] \delta C^T$

attitude error kinematics equation is similar to the attitude kinematics equation!!

Motion Error Kinematics

AEROSPACE ENGINEERING

Table 2: Attitude Error Kinematics.		
Attitude Error	$\delta \boldsymbol{\omega} = \boldsymbol{\omega} - \boldsymbol{\omega}_r$	$\delta \boldsymbol{\omega} = \boldsymbol{\omega} - \delta C \boldsymbol{\omega}_r$
DCM	$\delta \dot{C} = [\delta \boldsymbol{\omega} \times] \delta C - [\boldsymbol{\omega}_r \times] \delta C + \delta C [\boldsymbol{\omega}_r \times]$	$\delta \dot{C} = -[\delta \boldsymbol{\omega} \times] \delta C$
Quaternion	$\delta \dot{\boldsymbol{q}} = \frac{1}{2} \begin{bmatrix} -\left(\begin{bmatrix} \delta \boldsymbol{\omega} \times \end{bmatrix} + 2\begin{bmatrix} \boldsymbol{\omega}_{\boldsymbol{r}} \times \end{bmatrix} \right) & \delta \boldsymbol{\omega} \\ -\delta \boldsymbol{\omega}^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} \delta \boldsymbol{q}_{v} \\ \delta \boldsymbol{q}_{4} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \delta q_{4} & -\delta q_{3} & \delta q_{2} \\ \delta q_{3} & \delta q_{4} & -\delta q_{1} \\ -\delta q_{2} & \delta q_{1} & \delta q_{4} \\ -\delta q_{1} & -\delta q_{2} & -\delta q_{3} \end{bmatrix} \begin{bmatrix} \delta \boldsymbol{\omega}_{1} \\ \delta \boldsymbol{\omega}_{2} \\ \delta \boldsymbol{\omega}_{3} \end{bmatrix} - \begin{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{\boldsymbol{r}} \times \end{bmatrix} \delta \boldsymbol{q}_{v} \\ 0 \end{bmatrix}$	$\delta \dot{\boldsymbol{q}} = \frac{1}{2} \begin{bmatrix} -[\delta \boldsymbol{\omega} \times] & \delta \boldsymbol{\omega} \\ -\delta \boldsymbol{\omega}^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} \delta \boldsymbol{q}_{\mathrm{v}} \\ \delta \boldsymbol{q}_{\mathrm{4}} \end{bmatrix}$
CRPs	$\delta \dot{\boldsymbol{\rho}} = \frac{1}{2} \Big[[I_{3\times 3}] + [\delta \boldsymbol{\rho} \times] + \delta \boldsymbol{\rho} \delta \boldsymbol{\rho}^T \Big] \delta \boldsymbol{\omega} - [\boldsymbol{\omega}_r \times] \delta \boldsymbol{\rho}$	$\delta \dot{\boldsymbol{\rho}} = \frac{1}{2} \Big[[I_{3\times 3}] + [\delta \boldsymbol{\rho} \times] + \delta \boldsymbol{\rho} \delta \boldsymbol{\rho}^T \Big] \delta \boldsymbol{\omega}$
MRPs	$\delta \dot{\boldsymbol{\sigma}} = \frac{1}{4} \Big[(1 - \delta \boldsymbol{\sigma}^{\mathrm{T}} \delta \boldsymbol{\sigma}) [I_{3\times 3}] + 2 [\delta \boldsymbol{\sigma} \times] + 2 \delta \boldsymbol{\sigma} \delta \boldsymbol{\sigma}^{\mathrm{T}} \Big] \delta \boldsymbol{\omega} - [\boldsymbol{\omega}_{\mathrm{r}} \times] \delta \boldsymbol{\sigma}$	$\delta \dot{\boldsymbol{\sigma}} = \frac{1}{4} \Big[(1 - \delta \boldsymbol{\sigma}^T \delta \boldsymbol{\sigma}) [I_{3\times 3}] + 2 [\delta \boldsymbol{\sigma} \times] + 2 \delta \boldsymbol{\sigma} \delta \boldsymbol{\sigma}^T \Big] \delta \boldsymbol{\omega}$
Euler An- gles*	$\begin{bmatrix} \delta \dot{\theta}_1 \\ \delta \dot{\theta}_2 \\ \delta \dot{\theta}_3 \end{bmatrix}_{ijk} = \frac{1}{4} (H_{ijk}^T H_{ijk}^T)^{-1} H_{ijk}^T \begin{bmatrix} -\left([\delta \boldsymbol{\omega} \times] + 2[\boldsymbol{\omega}_r \times] \right) & \delta \boldsymbol{\omega} \\ -\delta \boldsymbol{\omega}^T & 0 \end{bmatrix} \Theta_{ijk}$	$\begin{bmatrix} \delta \dot{\theta}_1 \\ \delta \dot{\theta}_2 \\ \delta \dot{\theta}_3 \end{bmatrix}_{ijk} = \mathbf{S}^{-1} (\delta \theta_1, \delta \theta_2, \delta \theta_3) \delta \boldsymbol{\omega}$
Principal angle/axis	$\delta \dot{\phi} = \delta \boldsymbol{\omega}^{T} \delta \hat{\boldsymbol{e}} = \delta \hat{\boldsymbol{e}}^{T} \delta \boldsymbol{\omega}$ $\delta \dot{\boldsymbol{e}} = \frac{1}{2} \left[[\delta \hat{\boldsymbol{e}} \times] - \cot(\delta \phi / 2) [\delta \hat{\boldsymbol{e}} \times] [\delta \hat{\boldsymbol{e}} \times] \right] \delta \boldsymbol{\omega} - [\boldsymbol{\omega}_{r} \times] \delta \hat{\boldsymbol{e}}$	$\delta \dot{\phi} = \delta \boldsymbol{\omega}^T \delta \hat{\boldsymbol{e}} = \delta \hat{\boldsymbol{e}}^T \delta \boldsymbol{\omega}$ $\delta \dot{\boldsymbol{e}} = \frac{1}{2} [[\delta \hat{\boldsymbol{e}} \times] - \cot(\delta \phi / 2) [\delta \hat{\boldsymbol{e}} \times] [\delta \hat{\boldsymbol{e}} \times]] \delta \boldsymbol{\omega}$
Cayley- Klein	$\operatorname{col}(\delta \dot{K}) = \frac{1}{2} \Psi_0 \begin{bmatrix} -([\delta \boldsymbol{\omega} \times] + 2[\boldsymbol{\omega}_r \times]) & \delta \boldsymbol{\omega} \\ -\delta \boldsymbol{\omega}^T & 0 \end{bmatrix} \Psi_0^{-1} \operatorname{col}(\delta K)$ where $\Psi_* = \begin{bmatrix} 0 & 0 & i & 1 \\ i & -1 & 0 & 0 \\ i & 1 & 0 & 0 \\ 0 & 0 & -i & 1 \end{bmatrix}$	$\operatorname{col}(\delta \dot{K}) = \frac{1}{2} \Psi_0 \begin{bmatrix} -[\delta \boldsymbol{\omega} \times] & \delta \boldsymbol{\omega} \\ -\delta \boldsymbol{\omega}^T & 0 \end{bmatrix} \Psi_0^{-1} \operatorname{col}(\delta K)$ where $\Psi_{i} = \begin{bmatrix} 0 & 0 & i & 1 \\ i & -1 & 0 & 0 \\ i & 1 & 0 & 0 \\ 0 & 0 & -i & 1 \end{bmatrix}$

*See Ref.[1] for H_{ijk} and Θ_{ijk} definitions, and see Ref.[2] for $\mathbf{S}^{-1}(\delta\theta_1, \delta\theta_2, \delta\theta_3)$ definition.

[1] Bani Younes, A., Mortari, D., Turner, J.D., and Junkins, J.L. "Attitude Error Kinematics," AIAA Journal of Guidance, Control, and Dynamics, accepted.[2] P.C. Hughes. Spacecraft attitude dynamics. J. Wiley, 1986.

Quadratic Penalty Function

Land Air and Space Robotics

$$Minimize J = \frac{1}{2} \Phi(t_f, x_i(t_f)) + \frac{1}{2} \int_{t_0}^{t_f} \left\{ q_{j_3 j_4} x_{j_3} x_{j_4} + r_{j_5 j_6} u_{j_5} u_{j_6} \right\} dt$$

Subject to
$$\dot{x}_{i} = a_{ij_{1}}x_{j_{1}} + c_{ijkl}x_{j}x_{k}x_{l} + t_{imn}x_{m}x_{n} + d_{i} + b_{ij_{2}}u_{j_{2}}$$

Co-states $\dot{\lambda}_{i} = -q_{ij_{4}}x_{j_{4}} - \lambda_{i_{1}}\left\{a_{i_{1}i} + c_{i_{1}jkl}x_{j}x_{k} + c_{i_{1}jll}x_{j}x_{l} + c_{i_{1}ikl}x_{k}x_{l} + t_{i_{1}ml}x_{m} + t_{i_{1}m}x_{n}\right\}$
Co-states (assumed form) $\lambda_{i_{4}} = k_{i_{4}j_{8}}x_{j_{8}} + p_{i_{4}}$

Control Gains:

$$\dot{p}_{i} = -k_{ij}d_{j} + k_{ij}b_{jk}r_{lk}^{-1}b_{ml}p_{m} - p_{n}a_{ni}, \quad p_{i}(t_{f}) = 0$$

$$\dot{k}_{ij} = -k_{kj}a_{ki} + k_{il}b_{lm}r_{nm}^{-1}b_{on}k_{oj} - k_{il}a_{lj} - q_{ij} - p_{r}t_{rji} - p_{r}t_{rij}, \quad k_{ij}(t_{f}) = K_{f}$$

 $p_i = 0$ and $k_{ii} = \delta_{ii} 10^3$

where $\begin{cases} \delta_{ij} = 0 \text{ if } i \neq j \\ \delta_{ii} = 1 \text{ if } i = i \end{cases}$

Closed-Loop Optimal Control Problem

 $\omega(0) = [-0.1, -0.2, -0.3] \text{ rad} / \text{sec}, \zeta(0) = [-2.4142, 0, 0]$ $I = diag([86.215, 85.070, 113.565]) Kg.m^2$

$$Q_1 = 0, Q_3 = 1, Q_2 = 0_{3\times 3},$$

 $Q_4 = I_{3\times 3}, R = 10^{-4} I_{3\times 3}$

Universal Penalty Function

 $Minimize \left| J = \frac{1}{2} \left\{ Q_1 g(\delta \zeta_{t_f}) + \delta \omega_{t_f}^T Q_2 \delta \omega_{t_f} \right\} + \frac{1}{2} \int_{t_0}^{t_f} \left\{ Q_3 g(\delta \zeta) + \delta \omega^T Q_4 \delta \omega + u^T R u \right\} dt \right|$

Subject to
$$\dot{\mathbf{x}} = [\delta \dot{\boldsymbol{\omega}}^T \quad \delta \dot{\boldsymbol{\zeta}}^T]^T = f(\delta \boldsymbol{\omega}, \delta \boldsymbol{\zeta}, \boldsymbol{u})$$

Universe Penalty Function

$$\left[\delta C\left(\delta \hat{\boldsymbol{e}}, \delta \phi\right)\right] = \frac{1}{4} \left\{3 - \operatorname{trace}\left(\left[\delta C\right]\right)\right\} = \sin^2\left(\delta \phi / 2\right)$$

$$\delta \boldsymbol{\omega} = \boldsymbol{\omega} - \boldsymbol{\omega}_{r}$$

$$\delta \dot{\boldsymbol{\omega}} = -I^{-1} \{ [\boldsymbol{\omega}_{r} \times] I - [(I\boldsymbol{\omega}_{r}) \times] \} \delta \boldsymbol{\omega} - I^{-1} [\delta \boldsymbol{\omega} \times] I \delta \boldsymbol{\omega} + I^{-1} \boldsymbol{u} - \dot{\boldsymbol{\omega}}_{r} - I^{-1} [\boldsymbol{\omega}_{r} \times] I \boldsymbol{\omega}_{r}$$

$$\delta \dot{\boldsymbol{\zeta}} = f(\delta \boldsymbol{\zeta}) \delta \boldsymbol{\omega} - [\boldsymbol{\omega}_{r} \times] \delta \boldsymbol{\zeta}$$

$$\dot{\boldsymbol{\lambda}}_{\delta \boldsymbol{\omega}} = -Q_{4} \delta \boldsymbol{\omega} - f(\delta \boldsymbol{\zeta})^{T} \boldsymbol{\lambda}_{\delta \boldsymbol{\zeta}} - \left(I[\delta \boldsymbol{\omega} \times] - [(I \delta \boldsymbol{\omega}) \times] - \{ [\boldsymbol{\omega}_{r} \times] I - [(I \boldsymbol{\omega}_{r}) \times] \}^{T} \right) I^{-1} \boldsymbol{\lambda}_{\delta \boldsymbol{\omega}}$$

$$\dot{\boldsymbol{\lambda}}_{\delta \boldsymbol{\zeta}} = -\frac{1}{2} Q_{3} \frac{\partial g}{\partial (\delta \boldsymbol{\zeta})} - \frac{\partial}{\partial (\delta \boldsymbol{\zeta})} \left[f(\delta \boldsymbol{\zeta}) \delta \boldsymbol{\omega} \right]^{T} \boldsymbol{\lambda}_{\delta \boldsymbol{\zeta}} - [\boldsymbol{\omega}_{r} \times] \boldsymbol{\lambda}_{\delta \boldsymbol{\zeta}}$$

$$\begin{split} \delta\boldsymbol{\omega} &= \boldsymbol{\omega} - \delta C \boldsymbol{\omega}_{r} \\ \delta \dot{\boldsymbol{\omega}} &= -I^{-1} \left\{ \left[(\delta C \boldsymbol{\omega}_{r}) \times \right] I - \left[(I \delta C \boldsymbol{\omega}_{r}) \times \right] \right\} \delta \boldsymbol{\omega} - I^{-1} \left[\delta \boldsymbol{\omega} \times \right] I \delta \boldsymbol{\omega} + I^{-1} \boldsymbol{u} + \left[\delta \boldsymbol{\omega} \times \right] \delta C \boldsymbol{\omega}_{r} \\ - \dot{\boldsymbol{\omega}}_{r} - I^{-1} \left[(\delta C \boldsymbol{\omega}_{r}) \times \right] I \delta C \boldsymbol{\omega}_{r} \\ \delta \dot{\boldsymbol{\zeta}} &= f \left(\delta \boldsymbol{\zeta} \right) \delta \boldsymbol{\omega} \\ \dot{\boldsymbol{\lambda}}_{\delta \omega} &= -Q_{4} \delta \boldsymbol{\omega} - f \left(\delta \boldsymbol{\zeta} \right)^{T} \boldsymbol{\lambda}_{\delta \boldsymbol{\zeta}} - \\ \left(I \left[\delta \boldsymbol{\omega} \times \right] - \left[(I \delta \boldsymbol{\omega}) \times \right] - \left\{ \left[(\delta C \boldsymbol{\omega}_{r}) \times \right] I - \left[(I \delta C \boldsymbol{\omega}_{r}) \times \right] \right\}^{T} + \left[(\delta C \boldsymbol{\omega}_{r}) \times \right] I \right) I^{-1} \boldsymbol{\lambda}_{\delta \omega} \\ \dot{\boldsymbol{\lambda}}_{\delta \boldsymbol{\zeta}} &= -\frac{1}{2} Q_{3} \frac{\partial g}{\partial \left(\delta \boldsymbol{\zeta} \right)} - \frac{\partial}{\partial \left(\delta \boldsymbol{\zeta} \right)} \left[f \left(\delta \boldsymbol{\zeta} \right) \delta \boldsymbol{\omega} \right]^{T} \boldsymbol{\lambda}_{\delta \boldsymbol{\zeta}} - \frac{\partial}{\partial \left(\delta \boldsymbol{\zeta} \right)} \left[\delta \dot{\boldsymbol{\omega}} \right]^{T} \boldsymbol{\lambda}_{\delta \omega} \end{split}$$

Open-Loop Optimal Control Problem

 $\omega(0) = [-0.1, -0.2, -0.3] \text{ rad / sec, } \zeta(0) = [-2.4142, 0, 0] \qquad Q_1 = 0, \ Q_3 = 1, \ Q_2 = 0_{3\times 3},$ $I = diag([86.215, 85.070, 113.565]) \quad Kg.m^2 \qquad \qquad Q_4 = I_{3\times 3}, \ R = 10^{-4}I_{3\times 3}$

MRP Attitude Penalty Function

Universal Penalty Function

$$G(\delta \boldsymbol{\sigma}) = \delta \boldsymbol{\sigma}^T \delta \boldsymbol{\sigma} = \tan^2 \left(\delta \phi / 4 \right)$$

Singularity at $\delta \phi = \pm 2\pi$ is avoided by introducing shadow set

 $\delta \boldsymbol{\sigma}^{s} = -\delta \boldsymbol{\sigma} / \delta \boldsymbol{\sigma}^{T} \delta \boldsymbol{\sigma}$ $\delta \boldsymbol{\sigma}^{s} = -\delta \boldsymbol{\sigma}$ $\delta \dot{\boldsymbol{\sigma}}^{s} = \delta \dot{\boldsymbol{\sigma}} - [\delta \boldsymbol{\sigma} \times] \delta \boldsymbol{\omega}$

The switching surface is set at

$$\delta \sigma^T \delta \sigma = 1$$

Conclusion

 $\mathbf{A}_{\mathbf{M}} \mid \mathbf{T}_{\mathbf{U} \ \mathbf{N} \ \mathbf{I} \ \mathbf{V} \ \mathbf{E} \ \mathbf{R}} \mathbf{A}_{\mathbf{S} \ \mathbf{I} \ \mathbf{T} \ \mathbf{Y}} \mathbf{A}_{\mathbf{R}}$

Optimal spacecraft maneuver strategies are presented for both open- and closed-loop problem formulations

Coordinate variable transformations are identified that enable error kinematics models to be developed for arbitrarily large rigid body rotational motion

Large rotational motion models are presented for several frequently used sets of attitude variables

Large angular rate dynamics models are presented for supporting closedloop tracking problem formulations

Universal penalty functions are introduced to solve for generic optimal tracking control (open-loop and close-loop solutions, large nonlinear motions)

Numerical simulation results are presented that show the applications of a universal solution to many spacecraft optimal control problems -- remove the dependency on the attitude coordinate choice

Thanks for listening!

Thank You!

AHMAD BANIYOUNES olalahmad@gmail.com

Optimal Open-Loop Control Formulation

Land Air and Space Robotics

Optimal Tracking Control

AFROSPACE ENGINEERING