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Rapid Venting Analysis — Problem Statement

» Background: Venting of unpressurized vehicle compartments is important
on both aircraft and spacecraft. Air moves between compartments and in/out
of the vehicle via vents on the Outer Mold Line. For spacecraft, proper ascent
venting (during launch) and descent venting (during re-entry) is important to
reduce loads on the structure and components.

* Problem: In modern vehicle development programs, a large number of
trajectories (100,000+) are generated to quantify the impacts from system and
environmental dispersions. Aircraft/Spacecraft venting analysis tools can be
time consuming to set-up and run. Therefore, only a modest number of
trajectories can be evaluated with high-fidelity tools. Also, using simple semi-
empirical indicators is not always effective at identifying the critical cases.
Consequently, a more efficient method is required to quickly and accurately
identify the critical cases for venting analysis.

 Solution: Develop a Matlab-based tool to “mimic” the high-fidelity venting

analysis results sufficiently well for use as a filter to quickly identify the
specific trajectories that are critical for venting.
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Generation of Re-Entry Venting Data

- Generate Many Dispersed Trajectories From Available Apollo Data
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« Use Apollo 8 High Velocity Re-Entry Trajectory as the “Nominal” Case
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Generation of Re-Entry Venting Data

» Apollo 8 Earth-Relative Velocity and Flight-Path Angle Time Histories
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I} Earth-fixed flight-path angle and velocity.

« Assumed Nominal 1976 Standard Atmosphere, Apollo Aerodynamics

* Reverse-Engineered the Flight Trajectory, absolute accuracy not critical

» “Disperse” the Atmosphere to Create 100,000 Unique Pressure Time
Histories as BCs for the Aft Bay Compartment Venting

 Venting Analysis Results from CHCHVENT (NASA-Marshall) via Matlab
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Rapid Venting Analysis — Overall Process

 Employ an Artificial Neural Network (NN) to “Mimic” the Results for
the Venting Analysis for the Compartment(s) on the Vehicle

 Train the NN on High-Fidelity Venting Code Results for a Small Number
of Diverse Cases

* NN Inputs are Based on the Freestream Static Pressure and Mach
Number Time Histories, and Functions Thereof

» Use Genetic Algorithms (GA) to Optimize the NN’s Input Parameters

* Run the Trained NN Through the Dispersion Set to Identify Critical
Trajectories for Venting (relative accuracy only)

 Run Those NN Identified Cases with the High-Fidelity Tool to Refine
the Predictions and Bracket the Venting

17 May 2013




An Artificial Neural Network

- An Artificial Neural Network is a Computer Program that Attempts to
Simulate the Structure and Behavior of a Biological Brain

* The NN is Comprised of Interconnected Neurons

- Each Neurons Receives Inputs, and Employs an “Activation Function”
to Produce an Output

* NNs use Multiple Layers, such as this 3-layer Feed-Forward NN (4/10/1)

Input Layer Hidden Layer OutputLayer

1 output

* NNs Learn by Repeated Application of a Training Set to Adjust the
Weights between Neurons

« Used for Pattern Recognition and as an “Universal Approximator”

* NN Inputs Optimized via a Genetic Algorithm (more on GAs later)
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Rapid Venting Analysis — Process Maturation

 Selected Four Trajectory “outliers” from the 100,000 Cases

» Conducted CHCHVENT Venting Analysis on These Four Trajectories

« Each Trajectory Case Included Input Data and Venting Results at 10 Hz,
One Trajectory has =4600 Training Cases (10Hzx8’x60”/’=4600)

* Initially a 9/20/1 NN was Trained Using P., dP./dt, and P, Moving
Averages (MAs) of 1”, 5”7, 10”, 15, 20”, 25”, and 40” as Inputs

» Output was Pressure Differential (AP) Between Compartment P and P.,

* NN Work Performed in Matlab using the Neural Network Toolbox

* The NN’'s MA Intervals were Changed to 1”7, 3", 57, 10”, 157, 25”, and
40”, to Eliminate an Observed =1/2Hz Oscillation

* Freestream Mach # was Added as a New NN Input to Improve Results

* NN’s MAs were then Optimized via a Genetic Algorithm
1”MA and 3”MA were retained to stop low-frequency oscillations
Five other MA time periods were constrained to the range
5”<MA<50” (MAs limited by available data) and optimized
GA Optimization found 107, 177, 27", 37", 50” as the best MA set
GA Work Performed in Matlab via Genetic Algorithm and Direct
Search Toolbox
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Genetic Algorithm Primer

What: Genetic Algorithms are a class of highly-adaptable optimization
approaches used in a wide range of applications.

How: A GA is a computer program that finds a near optimal solution by
mimicking the evolutionary concepts of Charles Darwin. A given problem
solution is characterized by a series of chromosomes and each is compared
against rival solutions in a solution population.

Why: GAs are very adaptable and can quickly find a near optimal solution. A
variety of constraints and cost functions can be used.

Implementation Details:

e The Chromosome: The answer to the optimization problem is decoded
from a chromosome. Each chromosome represents one solution.

The Population: A GA finds optimal solutions by interbreeding the
chromosomes within a given solution population. Additionally, the best
members of each population are carried over to the next generation.

The Constraints: Do not permit certain chromosomes from existing.

The Cost Function: Each solution is evaluated via a cost function,
which can include a wide variety of economic and non-economic factors.

Convergence History: Experience has shown that GAs are very
adaptable and can quickly find a near optimal solution.
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Rapid Venting Analysis — GA Optimization

- Partial GA Results Showing Typical Trends
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- After Many Generations, GA Results Clearly Show Preferred MAs
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Rapid Venting Analysis — Results

Venting Input Sets of Pressure Moving Averages
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- All 100,000 Trajectories Evaluated with GA/NN Tool (3” per trajectory)

» Peak |AP| Value Predicted within t1.3% and within +0.25 seconds

» Worst Three Dispersed Trajectories were Correctly Identified, In Order

18 of the Worst 20 Identified

 Innovative Approach to Evaluate Many Trajectories for Screening

» Useful in Trajectory Design as an Indicator, Constraint, or as part of
the Optimization Cost Function

- Higher-Accuracy Versions have the Potential to Provide Absolute
Venting Analyses of Known Configurations
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Summary

Aircraft and Spacecraft Unpressurized Compartment Venting Problem
Apollo Crew Module Design and A-8 Re-Entry Trajectory Re-Construction
Overall Process of Using Neural Networks to “mimic” Venting Results
One-Page Primer on Neural Networks
Maturing Neural Network Configurations and Input Variables
One-Page Primer on Genetic Algorithms
Results From GA-Optimization of the NN Input Variables
GA/NN Comparisons to the High-Fidelity Results
e Peak |AP| Value Predicted within £1.3% and within +0.25 seconds
e Worst Three Trajectories Identified in Order
e 18 of the Worst 20 Identified
An Innovative and Efficient Approach to Conduct Venting Analysis




