Spanning The Earth/Mars Chasm With Interplanetary Synodic-Resonant Waypoints

AIAA Houston Section Lunch 'n Learn (LnL) 18 March 2025

The Chasm: What's Wrong With NASA's Moon to Mars (M2M) Roadmap?¹

¹ Reference https://www.nasa.gov/wp-

content/uploads/2023/04/m2m_strategy_and_objectives_development.pdf?emrc=c21aff?emrc=c21aff, p. 6 (accessed 12 Mar 2025).

No Wonder We've Remained About 20 Years From Landing Humans On Mars Since Dr. Wernher von Braun First Addressed The Problem in 1948²

- Mars is orders of magnitude more remote than the Moon: add a "not to scale" disclaimer to the M2M roadmap and reduce mistaken "Mars is easy" expectations among stakeholders
- Add interplanetary "waypoints" (WPs) to the M2M roadmap and reduce travel far from aid/haven

Transport Technology Solves Difficult Problems By Decomposing Them Into More Tractable "Stages"

- Before railroads, *stage* coaches swapped spent horses for fresh ones at strategic depots
- Missouri-to-California mail delivery via Pony Express relay in about 10 days circa 1860
- Single stage to Earth orbit capability remains elusive: only multi-stage rockets in use today
- If it's so difficult/dangerous, why do we insist on flying humans from Earth to Mars nonstop?
 - Place WPs in orbit about the Sun between Earth and Mars at which to routinely loiter en route, topping off consumables and optionally delivering or supplementing payload mass
 - Select WP orbits providing maximum availability naturally, with minimal propulsion

² Reference https://en.wikipedia.org/wiki/The_Mars_Project (accessed 12 Mar 2025).

Earth/Mars Transit Opportunities Arise When Mars Is Near Opposition

- Average time between
 oppositions is 26 months,
 the synodic period *τ* of
 Mars referenced to Earth
- Because τ is 2 months more than 2 years, successive oppositions advance in ecliptic longitude λ by about 360*2/12 = 60°
- Due to Mars orbit
 eccentricity, intervals
 between opposition dates
 vary as they cycle through
 λ over 15 years, a *synodic sequence T_s*

The Selected WP Orbit Is Available During 50% Of Earth/Mars Oppositions

A WP Availability Cycle Plays Out Over $2\tau = 52$ Months = 4.27 Years

In General, A λ_{31} = -136.6° WP Is Suboptimal With Respect To Earth/Mars Transits

- Define an optimality metric $\sum v_{\infty}$ as the sum of four hyperbolic asymptote speeds
 - Earth-to-Mars transits are composed of Leg-A, a WP loiter, and Leg-B stages, while Mars-to-Earth transits are composed of Leg-C, a WP loiter, and Leg-D stages
 - Earth-to-Mars (Leg-AB) transit $\sum v_{\infty} = v_{\infty Adep} + v_{\infty Aarr} + v_{\infty Bdep} + v_{\infty Barr}$
 - Mars-to-Earth (Leg-CD) transit $\sum v_{\infty} = v_{\infty Cdep} + v_{\infty Carr} + v_{\infty Ddep} + v_{\infty Darr}$
- Use the method of embedded trajectory grids to evaluate ∑v∞ for thousands of Leg-AB or Leg-CD transits using 2-Leg Lambert (2LL) scans at 5-day granularity
 - Comparable to NHATS methodology³, but a roundtrip itinerary starting at Earth is <u>not</u> imposed
 - Compliancy limits include maximum time-of-flight, minimum WP loiter, and maximum $\sum v_{\infty}$
 - Step through an opposition season, computing Leg-A/C transits for various WP arrival dates
 - For each compliant Leg-A/C transit, compute compliant Leg-B/D trajectories for various WP loiter times and arrival dates
 - Identify the compliant Leg-AB/CD transit with minimum $\sum v_{\infty}$ during the 2LL scan

³ Reference https://cneos.jpl.nasa.gov/nhats/intro.html (accessed 12 Mar 2025).

The λ_{31} = -156.6° WP Produces Most Efficient Earth-To-Mars Transits

The λ_{31} = -136.6° WP Is Under-Phased For Mars-To-Earth Transits

The λ_{31} = -116.6° WP Produces Most Efficient Mars-To-Earth Transits

Two Optimally Phased λ_{33} WPs Support Interleaved Transits Starting Circa 2033

WP Phasing	Supported Transits	Supported Opposition Seasons
$\lambda_{31} = -156.6^{\circ}$	Leg-AB	2031, 2035, 2040, 2044,
$\lambda_{31} = -116.6^{\circ}$	Leg-CD	2031, 2035, 2040, 2044,
$\lambda_{33} = -93.8^{\circ}$	Leg-AB	2033, 2037, 2042, 2046,
$\lambda_{33} = -63.8^{\circ}$	Leg-CD	2033, 2037, 2042, 2046,

• Therefore, a constellation of 4 WPs supports all Leg-AB and Leg-CD transits

• Note variations in $\sum v_{\infty}$ due to Mars heliocentric distance at transit arrive (Leg-B)/depart (Leg-C)⁴

Opposition	Leg-AB WP			Leg-CD WP		
Season	Phasing	Minimum	$\sum \mathbf{v}_{\infty}$ (km/s)	Phasing	Minimum	$\sum \mathbf{v}_{\infty}$ (km/s)
2031	$\lambda_{31} = -156.6^{\circ}$	9.480	6.747	$\lambda_{31} = -116.6^{\circ}$	12.279	7.226
2033	$\lambda_{33} = -93.8^{\circ}$	7.729	6.336	$\lambda_{33} = -63.8^{\circ}$	11.310	6.033
2035	$\lambda_{31} = -156.6^{\circ}$	13.797	5.855	$\lambda_{31} = -116.6^{\circ}$	8.774	5.980
2037	$\lambda_{33} = -93.8^{\circ}$	11.318	7.013	$\lambda_{33} = -63.8^{\circ}$	8.945	6.930
2040	$\lambda_{31} = -156.6^{\circ}$	15.044	7.206	$\lambda_{31} = -116.6^{\circ}$	12.224	5.950
2042	$\lambda_{33} = -93.8^{\circ}$	13.985	5.772	$\lambda_{33} = -63.8^{\circ}$	13.264	5.654
2044	$\lambda_{31} = -156.6^{\circ}$	12.545	5.811	$\lambda_{31} = -116.6^{\circ}$	12.857	7.122
2046	$\lambda_{33} = -93.8^{\circ}$	12.545	6.416	$\lambda_{33} = -63.8^{\circ}$	12.441	7.507

⁴ Italicized $\sum v_{\infty}$ values pertain to contemporaneous single-leg (nonstop) transits to which WP phasing λ_{31} and λ_{33} values do not apply.

Variations In Maximum Deliverable Payload Mass Are Complex Between Nonstop And Contemporaneous 2-Leg Itineraries Over *T_S*

- Assume propellant mass m_P can be replenished and payload mass m_Y can be exchanged/augmented during a 5-day WP loiter
- Assume transits flown by vehicle with inert mass $m_i = 100,000$ kg, maximum total mass $m_X = 1,300,000$ kg, and specific impulse $I_{SP} = 380$ s (producing propulsive exhaust speed $v_{EX} = 3.726546$ km/s)⁵
- Assume propellant mass m_P and m_Y can be freely exchanged such that $m_i + m_P + m_Y = m_X$ at a departure and $m_P = 0$ at an arrival
- Assume Earth departures/arrivals from a circular parking orbit at height of +185 km and Mars departures/arrivals from a circular parking orbit at height +382 km
- Document mission parameters for the nonstop and 2-leg minimum ∑v∞ transits originating at Earth and Mars during each opposition season from 2031 through 2046
 - Transit phase elapsed time (PET) since original departure at the end of each leg in the transit
 - Maximum deliverable m_Y at the end of each leg in the transit

⁵ Reference https://en.wikipedia.org/wiki/SpaceX_Starship (accessed 9 Nov 2024).

Variations In Maximum Deliverable Payload Mass Are Complex Between Nonstop And Contemporaneous 2-Leg Itineraries Over *T_S* (continued)

•	Earth-to-Mars	minimum	$\sum \mathcal{V}_{\infty}$	transits
---	---------------	---------	-----------------------------	----------

Opposition	Itinorary	Waypoint Arrival		Mars Arrival	
Year	i uner ar y	PET (d)	$m_Y(\mathbf{kg})$	PET (d)	$m_Y(\mathbf{kg})$
2021	Nonstop			285	142,566
2031	Leg-AB	145	218,034	300	295,439
2022	Nonstop			200	154,848
2055	Leg-AB	145	198,011	300	351,466
2025	Nonstop			200	176,938
2055	Leg-AB	120	195,250	300	63,817
2027	Nonstop			220	149,804
2037	Leg-AB	125	194,784	300	155,138
2040	Nonstop			300	143,770
2040	Leg-AB	120	179,231	300	69,288
2042	Nonstop			300	179,238
2042	Leg-AB	115	101,454	300	84,509
2044	Nonstop			300	174,951
2044	Leg-AB	125	176,186	300	153,424
2046	Nonstop			290	154,442
2040	Leg-AB	130	118,788	300	109,614

Variations In Maximum Deliverable Payload Mass Are Complex Between Nonstop And Contemporaneous 2-Leg Itineraries Over *T_S* (continued)

•	Mars-to-Earth	minimum	$\sum v_{\infty}$	transits
---	---------------	---------	-------------------	----------

Opposition	Itinorary	Waypoint Arrival		Earth Arrival	
Year	i uner ar y	PET (d)	$m_Y(\mathbf{kg})$	PET (d)	$m_Y(\mathbf{kg})$
2021	Nonstop			235	143,558
2031	Leg-CD	180	134,638	300	181,906
2022	Nonstop			215	174,623
2033	Leg- CD	160	157,282	300	211,818
2025	Nonstop			195	168,506
2033	Leg- CD	145	281,879	300	217,104
2027	Nonstop			270	138,276
2037	Leg- CD	145	286,771	300	174,225
2040	Nonstop			285	166,496
2040	Leg- CD	170	146,322	300	113,668
2042	Nonstop			300	178,882
2042	Leg- CD	180	96,468	300	112,222
2044	Nonstop			300	142,240
2044	Leg- CD	185	108,465	300	140,910
2046	Nonstop			245	136,992
2040	Leg- CD	180	119,756	300	175,799

Variations In Maximum Deliverable Payload Mass Are Complex Between Nonstop

And Contemporaneous 2-Leg Itineraries Over T_S (concluded)

Itinonomy	Total <i>m_Y</i> Deliverable Over <i>T_S</i> (15 years)				
Itinerary	To WP (kg)	To Mars (kg)			
Nonstop		1,276,558			
Leg-AB	1,381,738	1,282,696			

Itinonamy	Total <i>m_Y</i> Deliverable Over <i>T_S</i> (15 years)				
Tunerary	To WP (kg)	To Earth (kg)			
Nonstop		1,249,572			
Leg-CD	1,331,582	1,327,652			

• Are similar economics in play with U.S. commercial air travel? Only about 4% of bookable East/West Coast passenger itineraries are nonstop among the 4 most-patronized airlines.

Known Asteroids To Build & Supply WPs Are Abundant & Accessible⁶

- The rate of asteroid discoveries will only increase as new survey telescopes become operational
- In this example, the $\lambda_{31} = -156.6^{\circ}$ WP (orange) is to be supplied from asteroid 1996 XB₂₇ (violet) The estimated diameter of
- 1996 XB₂₇ is 100 to 245

meters

⁶ As of 12 March 2025, catalogued NEAs orbiting the Sun between Earth and Mars numbered 493.

Known Asteroids To Build & Supply WPs Are Abundant & Accessible (continued)

Daniel R. Adamo (adamod@earthlink.net)

Known Asteroids To Build & Supply WPs Are Abundant & Accessible (continued)

Origin: SN 12 = eLon31=-156.592°WPephem.txt import Blue Plot: WP to 1996 XB27 Transit Violet Plot: 1996 XB27 JPL#85 import

 $^{^{7}}$ For reference, International Space Station mass is near 400,000 kg

km Units LVS Coordinate System Illumination from Sun (10) Origin: SN 13 = eLon31=-156.592°WPephem.txt import Blue Plot: 1996 XB27 to WP Transit Violet Plot: 1996 XB27 JPL#85 import

WPs Serve As Communications Relays During Earth/Mars Solar Conjunctions

Line-of-sight between
Earth and Mars is too
close to the Sun for
communications from
39 to 51 days during
every *τ*

•

 At these times, any of the four WPs can serve as a "bent pipe" communication relay

Daniel R. Adamo (adamod@earthlink.net)

WPs Offer Proximal Haven Following Interplanetary Transit Abort

Daniel R. Adamo (adamod@earthlink.net)

This scenario

commences with

Leg-D nominal

Thirty days after

departing the λ_{31}

 $= -116.6^{\circ}$ WP for

Earth, a return abort is

initiated with jettison to

achieved 80 days after

nominal WP departure

with +27,323 kg

propellant margin

trajectory

 $m_Y = 0$

2031's minimum $\sum v_{\infty}$

WPs Support Interplanetary Exploration And Commerce In Many Ways

- A WP loiter breaks any nonstop transport consumption requirement into two smaller staged segments
- Four WPs serve every Earth/Mars transit opportunity. Each WP is utilized every 4.27 years (on average) without modifications to the WP orbit.
- More cargo mass can be transported to Earth, Mars, and WPs over time than with nonstop Earth/Mars transits using the same spacecraft
- Mass for WP construction and resupply can be obtained from adjacent near-Earth asteroids
- Any WP can serve as an Earth/Mars communications relay to eliminate outages that would otherwise arise when the two planets are on opposite sides of the Sun
- A nominally utilized WP also provides additional forward and turnaround abort destination options

Original Waypoints Research Published In AIAA's *Journal of Spacecraft and Rockets* (ref. "Synodic-Resonant Earth/Mars Waypoints" At https://doi.org/10.2514/1.A36186)